服務(wù)熱線
0319-5399994 5399995
它是可以對不銹鋼、鈦合金和高溫合金等金屬進(jìn)行熔化焊及對小試件進(jìn)行快速高效的局部加熱釬焊的最新技術(shù)。該技術(shù)由俄羅斯發(fā)明,并迅速應(yīng)用在航空發(fā)動機(jī)的焊接中。使用真空電弧進(jìn)行渦輪葉片的修復(fù)、鈦合金氣瓶的焊接,可以有效地解決材料氧化、軟化、熱裂、抗氧化性能降低等問題。
窄間隙熔化極氣體保護(hù)電弧焊技術(shù)
它具有比其他窄間隙焊接工藝更多的優(yōu)勢,在任意位置都能得到高質(zhì)量的焊縫,且具有節(jié)能、焊接成本低、生產(chǎn)效率高、適用范圍廣等特點(diǎn)。利用表面張力過渡技術(shù)進(jìn)行熔化極氣體保護(hù)電弧焊表明,該技術(shù)必將進(jìn)一步促進(jìn)熔化極氣體保護(hù)電弧焊在窄間隙焊接的應(yīng)用。
激光填料焊接
是指在焊縫中預(yù)先填入特定焊接材料后用激光照射熔化或在激光照射的同時填入焊接材料以形成焊接接頭的方法。廣義的激光填料焊接應(yīng)該包括兩類:激光對焊與激光熔覆。其中,激光熔覆是利用激光在工件表面熔覆一層金屬、陶瓷或其它材料,以改善材料表面性能的一種工藝。激光填料焊接技術(shù)主要應(yīng)用于異種材料焊接、有色及特種材料焊接和大型結(jié)構(gòu)鋼件焊接等激光直接對焊不能勝任的領(lǐng)域。
高速焊接技術(shù)
它使MIG/MAG的焊接生產(chǎn)率成倍增長,它包括快速電弧技術(shù)和快速熔化技術(shù)。由于采用的焊接電流大,所以熔深大,一般不會產(chǎn)生未焊透和熔合不良等缺陷,焊縫成形良好,焊縫金屬與母材過渡平滑,有利于提高疲勞強(qiáng)度。
攪拌摩擦焊(FSW)
1991年FSW技術(shù)由英國焊接研究所發(fā)明,作為一種固相連接手段,它克服了熔焊的諸如氣孔、裂紋、變形等缺陷,更使以往通過傳統(tǒng)熔焊手段無法實(shí)現(xiàn)焊接的材料可以采用FSW實(shí)現(xiàn)焊接,被譽(yù)為“繼激光焊后又一革命性的焊接技術(shù)”。
FSW主要由攪拌頭的摩擦熱和機(jī)械擠壓的聯(lián)合作用下形成接頭,其主要原理和特點(diǎn)是:焊接時旋轉(zhuǎn)的攪拌頭緩緩進(jìn)入焊縫,在與工件表面接觸時通過摩擦生熱使周圍的一層金屬塑性化。同時,攪拌頭沿焊接方向移動形成焊縫。
作為一種固相連接手段,F(xiàn)SW除了可以焊接用普通熔焊方法難以焊接的材料外(例如可以實(shí)現(xiàn)用熔焊難以保證質(zhì)量的裂紋敏感性強(qiáng)的7000、2000系列鋁合金的高質(zhì)量連接),F(xiàn)SW還具有溫度低,變形小、接頭力學(xué)性能好(包括疲勞、拉伸、彎曲),不產(chǎn)生類似熔焊接頭的鑄造組織缺陷,并且其組織由于塑性流動而細(xì)化、焊接變形小、焊前及焊后處理簡單、能夠進(jìn)行全位置的焊接、適應(yīng)性好,效率高、操作簡單、環(huán)境保護(hù)好等優(yōu)點(diǎn)。
尤其值得指出的是,攪拌摩擦焊具有適合于自動化和機(jī)器人操作的優(yōu)點(diǎn),諸如:不需要填絲、保護(hù)氣(對于鋁合金)、可以允許有薄的氧化膜、對于批量生產(chǎn),不需要進(jìn)行打磨、刮擦之類的表面處理非損耗的工具頭、一個典型的工具頭就可以用來焊接6000系列的鋁合金達(dá)1000米等。
激光-電弧復(fù)合熱源焊接(Laser Arc Hybrid)
Laser Arc Hybrid在1970年就已提出,然而,穩(wěn)定的加工直至近幾年才出現(xiàn),這主要得益于激光技術(shù)以及弧焊設(shè)備的發(fā)展,尤其是激光功率和電流控制技術(shù)的提高。復(fù)合焊接時,激光產(chǎn)生的等離子體有利于電弧的穩(wěn)定;復(fù)合焊接可提高加工效率;可提高焊接性差的材料諸如鋁合金、雙相鋼等的焊接性;可增加焊接的穩(wěn)定性和可靠性;通常,激光加絲焊是很敏感的,通過與電弧的復(fù)合,則變的容易而可靠。激光 ― 電弧復(fù)合主要是激光與TIG、Plasma以及MAG。通過激光與電弧的相互影響,可克服每一種方法自身的不足,進(jìn)而產(chǎn)生良好的復(fù)合效應(yīng)。MAG成本低,使用填絲,適用性強(qiáng),缺點(diǎn)是熔深淺、焊速低、工件承受熱載荷大。激光焊可形成深而窄的焊縫,焊速高、熱輸入低,但投資高,對工件制備精度要求高,對鋁等材料的適應(yīng)性差。
Laser-MAG的復(fù)合效應(yīng)表現(xiàn)在:電弧增加了對間隙的橋接性,其原因有二:一是填充焊絲,二是電弧加熱范圍較寬;電弧功率決定焊縫頂部寬度;激光產(chǎn)生的等離子體減小了電弧引燃和維持的阻力,使電弧更穩(wěn)定;激光功率決定了焊縫的深度;更進(jìn)一步講,復(fù)合導(dǎo)致了效率增加以及焊接適應(yīng)性的增強(qiáng)。激光電弧復(fù)合對焊接效率的提高十分顯著。這主要基于兩種效應(yīng),一是較高的能量密度導(dǎo)致了較高的焊接速度,工件對流損失減??;二是兩熱源相互作用的疊加效應(yīng)。焊接鋼時,激光等離子體使電弧更穩(wěn)定,同時,電弧也進(jìn)入熔池小孔,減小了能量的損失;焊接鋁時,由于疊加效應(yīng)幾乎與激光波長無關(guān),其物理機(jī)制和特性尚待進(jìn)一步研究。
Laser-TIG Hybrid可顯著增加焊速,約為TIG焊接時的2倍;鎢極燒損也大大減小,壽命增加;坡口夾角亦減小,焊縫面積與激光焊時相近。阿亨大學(xué)弗朗和費(fèi)激光技術(shù)學(xué)院研制了―種激光雙弧復(fù)合焊接(HyDRA-Hybrid Welding With Double Rapid Arc),與激光單弧復(fù)合焊相比,焊接速度可增加約三分之一,線能量減小25% 。